2005 Vol. 7, No. 6 1051–1053

Cu(I)-Catalyzed Enantioselective [3 + 2] Cycloaddition Reaction of 1-Alkylallenylsilane with α -Imino Ester: Asymmetric Synthesis of Dehydroproline Derivatives

Kazunori Daidouji, Kohei Fuchibe, and Takahiko Akiyama*

Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

takahiko.akiyama@gakushuin.ac.jp

Received December 24, 2004

ABSTRACT

The catalytic, enantioselective [3 + 2] cycloaddition reaction of 1-alkyl-substituted allenylsilanes with α -imino ester has been achieved by means of [Cu(MeCN)₄]BF₄/(R)-DM-SEGPHOS catalyst to afford silyl-substituted dehydroproline derivatives in high yields and enantioselectivities.

The chiral Lewis acid-catalyzed cycloaddition reaction is a useful method for enantioselective formation of carbocyclic and heterocyclic compounds which are important building blocks for natural product synthesis and thus attracts attention of synthetic organic chemists. α -Substituted allenylsilanes are reported to work as counterparts of a cycloaddition reaction. Their application to enantioselective reaction is limited. For example, 1-methylallenylsilane undergoes [3 + 2] cycloaddition reaction with electron deficient olefins, aldehydes, and N, O-hemiacetal to give five-membered carbocycles and

heterocycles, respectively.⁴ Chiral Lewis acid-catalyzed [3 + 2] cycloaddition reaction with aldehydes leading to dihydrofuran derivatives has been reported.⁵ Catalytic enantioselective [3 + 2] cycloaddition reaction of allenylsilane with imine has not been reported as far as we know. Recently, we have reported Cu(I)-catalyzed enantioselective [2 + 2] cycloaddition reaction of 1-methoxyallenylsilane with α -imino ester.⁶ We wish to report herein enantioselective [3 + 2] cycloaddition reaction of α -alkylallenylsilane with α -imino ester by means of chiral Cu(I) catalyst.

At the outset, 1-methylallenylsilane $1a^7$ and α -imino ester 2 were treated with [Cu(MeCN)₄]BF₄ (10 mol %) in THF.⁶ Although no reaction proceeded at room temperature, [3 + 2] cycloaddition reaction took place under reflux conditions

⁽¹⁾ Evans, D. A.; Johnson, J. S. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer, Berlin, 1999; p 1177. Oi, T.; Maruoka, K. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer, Berlin, 1999; p 1237. *Cycloaddition Reactions in Organic Synthesis*; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, 2002.

⁽²⁾ Allenylsilane has been used as a propargyl anion equivalent; see: Yamamoto, H. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol 2, p 81. Danheiser, R. L.; Carini, D. J. *J. Org. Chem.* **1980**, *45*, 3925. Danheiser, R. L.; Carini, D. J.; Kwasigroch, C. A. *J. Org. Chem.* **1986**, *51*, 3870.

⁽³⁾ Panek, J. S. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol 1, p 579. Masse, C. E.; Panek, J. S. *Chem. Rev.* **1995**, *95*, 1293.

⁽⁴⁾ Danheiser, R. L.; Carini, D. J.; Basak, A. J. Am. Chem. Soc. 1981, 103, 1604. Danheiser, R. L.; Fink, D. M. Tetrahedron Lett. 1985, 26, 2513. Danheiser, R. L.; Kwasigroch, C. A.; Tsai, Y.-M. J. Am. Chem. Soc. 1985, 107, 7233.

⁽⁵⁾ Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem. Soc. **2001**, *123*, 12095.

⁽⁶⁾ Akiyama, T.; Daidouji, K.; Fuchibe, K. *Org. Lett.* **2003**, *5*, 3691. (7) For the preparation, see ref 5.

Scheme 1. Catalytic [3 \pm 2] Cycloaddition Reaction with α -Imino Ester

to give silyl-substituted dehydroproline derivative **3a** in 19% yield. Use of benzene as a solvent improved the chemical yield to 91% (Scheme 1).

We attempted the cycloaddition reaction of **1a** with other imine derivatives such as PhCH=NPh, PhCH=NTs, and EtOCOCH=NC₆H₄(*p*-OMe) using [Cu(MeCN)₄]BF₄ as the catalyst; no cycloadducts were obtained. It was found that use of highly reactive aldimine **2** is essential for the present cycloaddition reaction to proceed.

The asymmetric synthesis of silyl-substituted dehydroproline derivative $3a^8$ was investigated and the results are shown in Table 1. Treatment of 1a (1.0 equiv) and 2 (1.2

Table 1. Effect of Solvents and Chiral Ligands^a

$$\begin{array}{c} \text{Me} \\ \text{Si}(\textit{t-Bu})\text{Ph}_2 \\ \text{1a} \end{array} + \begin{array}{c} \text{N-Ts} \\ \text{EtO}_2\text{C} \\ \text{H} \\ \text{2} \end{array} + \begin{array}{c} \text{10 mol}\% \\ \text{[Cu(MeCN)}_4|BF_4 \\ \text{chiral ligand} \\ \text{reflux} \end{array} + \begin{array}{c} \text{Ts} \\ \text{N-Me} \\ \text{3a} \end{array} \\ \text{Si}(\textit{t-Bu})\text{Ph}_2 \\ \text{3a} \\ \text{Si}(\textit{t-Bu})\text{Ph}_2 \\ \text{PAr}_2 \\ \text{(R)-SEGPHOS; Ar=Ph} \\ \text{(R)-DM-SEGPHOS; Ar=3,5-Me}_2\text{-C}_6\text{H}_3 \end{array}$$

entry	solvent	chiral ligand	yield of 3a (%)	ee of 3a (%)
1	benzene	(R)-BINAP	48	58
2	benzene	(R)-Tol-BINAP	67	57
3	benzene	(R)-SEGPHOS	65	67
4	benzene	(R)-DM-SEGPHOS	53	85
5^b	benzene	(R)-DM-SEGPHOS	74	78
6	1,4-dioxane	(R)-DM-SEGPHOS	32	78
7	1,2-dichloromethane	(R)-DM-SEGPHOS	55	73
8	toluene	(R)-DM-SEGPHOS	60	75

^a 1.2 equiv of 2 was employed. ^b 2.0 equiv of 2 was employed.

equiv) with [Cu(MeCN)₄]BF₄/(R)-BINAP catalyst (10 mol %)⁹ in refluxing benzene for 7 h afforded **3a** in 48% yield with 58% ee (entry 1). Enantiomeric excess was determined by HPLC with a chiral stationary phase column (Chiralpak

Table 2. Reaction with Other Allenyl Derivatives

				vield of	ee of
entry	Si	R	time (h)	3 (%)	3 (%)
1	Si(t-Bu)Ph ₂	Me	7	74	85
2	$Si(t-Bu)Ph_2$	$n ext{-}\!\operatorname{Pr}$	9	52	77
3	$Si(t-Bu)Ph_2$	$i ext{-}\mathrm{Pr}$	24	50	78
4	$Si(t-Bu)Ph_2$	cyclohexyl	20	46	71
5^a	$Si(t-Bu)Me_2$	Me	3	90	75
6	SiPh_3	Me	5	71	84
7^a	$\mathrm{Si}(i\text{-Pr})_3$	Me	1	92	84
8	$\mathrm{Si}(t ext{-}\mathrm{Bu})\mathrm{Ph}_2$	H	3	0	

^a [Cu(MeCN)₄]PF₆ was employed.

AD-H). (R)-SEGPHOS¹⁰ (entry 3) was more effective than (R)-Tol-BINAP (entry 2). When (R)-DM-SEGPHOS was used as a chiral ligand, the highest enantioselectivity (85% ee) was observed (entry 4). Use of 2.0 equiv of **2** significantly improved the chemical yield to 74% (entry 5). Other solvents gave inferior results (entries 6–8).

Other allenylsilanes were examined, and the results are shown in Table 2. Allenyl(tert-butyl)diphenylsilanes bearing bulky silyl group afforded cycloadducts in good enantioselective manner (entries 2–4). tert-Butyldimethylsilyl-, triphenylsilyl-, and triisopropylsilyl-subsituted allenylsilanes also gave [3 + 2] cycloadducts (entries 5–7). It is noted that parent allenylsilane gave no cycloadduct (entry 8). The presence of α -alkyl group is essential for the present cycloaddition reaction to proceed.

Treatment of 2-alkyl-substituted pyrroline esters 3 with aqueous HI solution at room temperature for 2-3 h furnished desilylated γ -amino ketones 4 in high yields and without decreasing enantioselectivities (Table 3).

Table 3. Ring-Opening Reaction

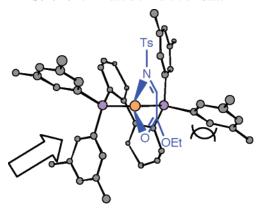
The 2-pyrroline esters described in this study afforded useful synthons. The vinylsilane functionality in pyrroline 3

1052 Org. Lett., Vol. 7, No. 6, 2005

⁽⁸⁾ For the chiral synthesis of 3-pyrroline, see: Kagoshima, H.; Okamura, T.; Akiyama, T. *J. Am. Chem. Soc.* **2001**, *123*, 7182.

⁽⁹⁾ For enantioselective Cu(I)-catalyzed nucleophilic addition reaction with α-imino ester, see: Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. *J. Am. Chem. Soc.* **1998**, *I20*, 4548. Drury, W. J., III; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. *J. Am. Chem. Soc.* **1998**, *I20*, 11006. Yao, S.; Fang, X.; Jørgensen, K. A. *Chem. Commun.* **1998**, 2547. Yao, S.; Saaby, S.; Hazell, R. G.; Jørgensen, K. A. *Chem. Eur. J.* **2000**, 6, 2435. Ferrars, D.; Young, B.; Cox, C.; Dudding, T.; Ryzhkov, L.; Taggi, A. E.; Lectka, T. *J. Am. Chem. Soc.* **2002**, *I24*, 67. Taggi, A. E.; Hafez, A. M.; Lectka, T. *Acc. Chem. Res.* **2003**, *36*, 10.

⁽¹⁰⁾ Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. *Adv. Synth. Catal.* **2001**, *343*, 264.


$$\begin{array}{c} \text{Ts} \\ \text{N} \\ \text{Me} \\ \text{Si}(\rlap{$^{\rlap{$\prime$}}}\text{Bu})\text{Me}_2 \\ \text{3b} \\ \end{array} \begin{array}{c} 1.5 \text{ equiv.} \\ \text{mCPBA} \\ \text{CH}_2\text{Cl}_2 \\ 0 \text{ °C, 2 h} \\ \end{array} \begin{array}{c} \text{Ts} \\ \text{Me} \\ \text{Si}(\rlap{$^{\rlap{$\prime$}}}\text{Bu})\text{Me}_2 \\ \text{5} \\ \text{5} \\ \text{90\% yield} \\ \end{array} \\ \begin{array}{c} 1.1 \text{ equiv.} \\ \text{HI aq.} \\ \text{Benzene} \\ \text{rt, 2 h} \\ \end{array} \begin{array}{c} \text{Ts} \\ \text{EtO}_2\text{C} \\ \text{N} \\ \text{Me} \\ \end{array}$$

is nucleophilic, and can be epoxidized with *m*-CPBA to produce epoxypyrrolidine **5**. Subsequent treatment with aqueous HI solution at room temperature furnished desilylated 3-pyrrolidinone **6** in a high yield (Scheme 2). The relative stereochemistry of **6** has not been determined.¹¹

Next, the absolute stereochemistry of γ -amino ketone 4a (R = Me) was determined to be S by comparison of the optical rotation of 8, which was prepared from 3a via 4a, with that of the authentic sample prepared from D-norleucine (Scheme 3). The absolute stereochemistry of pyrroline ester 3a was thus found to be S. We surmised that the absolute

Scheme 3. Determination of the Absolute Configuration

Scheme 4. Plausible Transition State^a

^a Methylenedioxy moieties of (R)-DM-SEGPHOS are omitted for clarity.

stereochemistries of other γ -amino ketones and pyrrolines to be S by analogy.

The stereochemical outcome can be rationalized by the plausible transition state model as shown in Scheme 4.¹² Because the *Re*-face is blocked by the pseudoequatorial dimethyphenyl moiety, allenylsilane attacks the *Si*-face preferentially to give *S*-isomer selectively.

In summary, we have developed the first enantioselective [3+2] cycloaddition reaction of 1-alkyl-substituted allenylsilanes with α -imino ester by chiral Cu(I) catalyst. Use of (*R*)-DM-SEGPHOS as a chiral ligand resulted in high enantioselective cycloaddition reaction.

Acknowledgment. We thank the Takasago International Corp. (Tokyo, Japan) for supplying the SEGPHOS ligands.

Supporting Information Available: Experimental procedures, spectra data, and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL047343C

Org. Lett., Vol. 7, No. 6, 2005

⁽¹¹⁾ We could not obtain 6 as crystals. All our attempts to determine the relative stereochemistry of 6 by NOE experiments failed.

⁽¹²⁾ Ferraris, D.; Young, B.; Cox, C.; Drury, W. J., III; Dudding, T.; Lectka, T. *J. Org. Chem.* **1998**, *63*, 6090. Yao, S.; Saaby, S.; Hazell, R. G.; Jørgensen, K. A. *Chem. Eur. J.* **2000**, *6*, 2435.